Tip 1 - Logarithms, Surds and Indices

- "Logarithms, Surds and Indices" is one of the easiest topics in the quantitative section of the CAT exam.
- Although the number of formulae is high, the basic concepts are very simple to understand and apply.
- There are no shortcuts to remember and the scope of the questions that can be asked is very limited.
- The accuracy of answering questions from this section is very high and good students tend to score very well here.

Tip 2 - Logarithms, Surds and Indices

If $X, Y>0$ and m, n are rational numbers then

- $X^{m} \times X^{n}=X^{m+n}$
- $X^{0}=1$
- $\frac{X^{m}}{X^{n}}=X^{m-n}$
- $\left(X^{m}\right)^{n}=X^{m n}$
- $X^{m} \times Y^{m}=(X \times Y)^{m}$
- $\frac{X^{m}}{Y^{m}}=(X / Y)^{m}$
- $\quad X^{-m}=\frac{1}{X^{m}}$

Tip 3 - Logarithms, Surds and Indices

If X and Y are positive real numbers and a, b are rational numbers.

- $(X / Y)^{-a}=(Y / X)^{a}$
- $X^{1 / a}=\sqrt[a]{X}$
- $X^{a b}=\sqrt[b]{X^{a}}$
- $\sqrt[a]{X} \times \sqrt[a]{Y}=\sqrt[2]{X Y}$
- $\sqrt[a]{X} / \sqrt[a]{Y}=\sqrt[a]{X / Y}$
- $\frac{1}{\sqrt{N+1}-\sqrt{\mathrm{N}}}=\sqrt{\mathrm{N}+1}+\sqrt{\mathrm{N}}$

Tip 4 - Logarithms, Surds and Indices

- Surd is an irrational number involving a root ex : $\sqrt{5}, \sqrt[3]{7}, \sqrt[5]{2}$
- Like surds are two surds having same number under radical sign.
- Like surds can be added or subtracted. $6 \sqrt{2}+3 \sqrt{2}=9 \sqrt{2}$

Tip 5 - Logarithms, Surds and Indices

- If $a+\sqrt{b}=c+\sqrt{d}$, then $a=c$ and $b=d$
- The conjugate of $a+\sqrt{b}$ is $a-\sqrt{b}$
- $\sqrt{a \sqrt{a \sqrt{a \ldots \ldots \infty}}}=a$
- $\sqrt{a \sqrt{a \sqrt{\ldots \ldots . . x \text { times }}}}=a^{1-\left[1 /\left(2^{\lambda} x\right)\right]}$
- To find $\sqrt{\sqrt{x}+\sqrt{y}}, \sqrt{x}+\sqrt{y}$ should be written in the form of $m+n+2 \sqrt{m n}$ where $x=m+n$ and $4 m n=y$ and $\sqrt{\sqrt{x}+\sqrt{y}}= \pm(\sqrt{m}+\sqrt{n})$

Tip 6 - Logarithms, Surds and Indices

If $\mathrm{N}=\mathrm{a}^{\mathrm{x}}$ then, x is defined as the logarithm of N to base a
or $x=\log _{a} N$
Logarithm of a negative number or zero is not defined.

- $\log _{a} 1=0$
- $\log _{a} x y=\log _{a} x+\log _{a} y$
- $\log _{a} b^{c}=c \log _{a} b$
- $\log _{\mathrm{a}} \mathrm{a}=1$
- $x^{\log _{b} y}=y^{\log _{b} x}$

Tip 7 - Logarithms, Surds and Indices

- $\log _{a} \sqrt[n]{b}=\frac{\log _{g} b}{n}$
- $\log _{a} x=\frac{1}{\log _{x} a}$
- $b^{\log _{b} x}=x$
- $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$
- $\log _{\mathrm{a}} \mathrm{b} * \log _{\mathrm{b}} \mathrm{a}=1$
- $\log _{a}(X / Y)=\log _{a} X-\log _{\mathrm{a}} \mathrm{Y}$

Tip 8 - Logarithms, Surds and Indices

- If $0<a<1$, then $\log _{a} x<\log _{a} y$ (if $x>y$)
- If $a>1$ then $\log _{a} x>\log _{a} y$ (if $x>y$)

