Number Systems Tips

- Number Systems is the most important topic in the quantitative section.
- It is a very vast topic and a significant number of questions appear in CAT every year from this section.
- Learning simple tricks like divisibility rules, HCF and LCM, prime number and remainder theorems can help improve the score drastically.
- This document presents best short cuts which makes this topic easy and helps you perform better.

Tip 1 - Number systems

HCF and LCM

- HCF * LCM of two numbers = Product of two numbers
- The greatest number dividing a, b and c leaving remainders of x_{1}, x_{2} and x_{3} is the HCF of $\left(a-x_{1}\right),\left(b-x_{2}\right)$ and $\left(c-x_{3}\right)$.
- The greatest number dividing a, b and $c(a<b<c)$ leaving the same remainder each time is the HCF of (c-b), (c-a), (b-a).
- If a number, N, is divisible by X and Y and $\operatorname{HCF}(X, Y)=1$. Then, N is divisible by $\mathrm{X}^{*} \mathrm{Y}$

Tip 2 - Number systems

Prime and Composite Numbers

- Prime numbers are numbers with only two factors, 1 and the number itself.
- Composite numbers are numbers with more than 2 factors. Examples are 4, 6, 8, 9.
- 0 and 1 are neither composite nor prime.
-There are 25 prime numbers less than 100.

Tip 3 - Number systems

Properties of Prime numbers

- To check if n is a prime number, list all prime factors less than or equal to $\sqrt{ } n$. If none of the prime factors can divide n then n is a prime number.
- For any integer a and prime number $p, a^{p}-a$ is always divisible by p
- All prime numbers greater than 2 and 3 can be written in the form of $6 k+1$ or $6 k-1$
- If a and b are co-prime then $a^{(b-1)} \bmod b=1$.

Tip 4 - Number systems

Theorems on Prime numbers

Fermat's Theorem:

Remainder of $a^{\wedge}(p-1)$ when divided by p is 1 , where p is a prime

Wilson's Theorem:

Remainder when $(p-1)$! is divided by p is $(p-1)$ where p is a prime

Tip 5 - Number systems

Theorems on Prime numbers

Remainder Theorem

- If a, b, c are the prime factors of N such that $N=a^{p} b^{q}{ }^{*} c^{r}$

Then the number of numbers less than N and co-prime to N is

$$
\phi(N)=N(1-1 / a)(1-1 / b)(1-1 / c) .
$$

This function is known as the Euler's totient function.
Euler's theorem

- If M and N are co-prime to each other then remainder when $M^{\phi(N)}$ is divided by N is 1 .

Tip 6 - Number systems

- Highest power of n in m ! is $[m / n]+\left[m / n^{2}\right]+\left[m / n^{3}\right]+\ldots$.

Ex: Highest power of 7 in $100!=[100 / 7]+[100 / 49]=16$

- To find the number of zeroes in n ! find the highest power of 5 in n !
- If all possible permutations of n distinct digits are added together the sum $=(n-1)!$ * (sum of n digits) * (11111... n times)

Tip 7 - Number systems

- If the number can be represented as $N=a^{p} * b^{q} * c^{r}$. . then number of factors the is $(p+1)$ * $(q+1)$ * $(r+1)$
- Sum of the factors $=\frac{a^{p+1}-1}{a-1} * \frac{b^{q+1}-1}{b-1} * \frac{c^{r+1}-1}{c-1}$
- If the number of factors are odd then N is a perfect square.
- If there are n factors, then the number of pairs of factors would be $\mathrm{n} / 2$. If N is a perfect square then number of pairs (including the square root) is $(n+1) / 2$

Tip 8 - Number systems

If the number can be expressed as $N=2^{p} * a^{q} * b^{r} \ldots$ where the power of 2 is p and a, b are prime numbers

- Then the number of even factors of $\mathrm{N}=\mathrm{p}(1+\mathrm{q})(1+\mathrm{r}) \ldots$
- The number of odd factors of $N=(1+q)(1+r) \ldots$

Tip 9 - Number systems

Number of positive integral solutions of the equation $x^{2}-y^{2}=k$ is given by

- Total number of factors of k (If k is odd but not a perfect square)
- $\frac{\text { (Total number of factors of } \mathrm{k})-1}{2}$ (If k is odd and a perfect square)

Total number of factors of ${ }^{\mathrm{k}}$

- 2
- (Total number of factors of $\underset{4}{\stackrel{\mathrm{k}}{4}-1}$ (If it is even and a perfect square)

Tip 10 - Number systems

- Number of digits in $a^{b}=\left[b \log _{\mathrm{m}}(\mathrm{a})\right]+1$; where m is the base of the number and [.] denotes greatest integer function
- Even number which is not a multiple of 4 , can never be expressed as a difference of 2 perfect squares.

Tip 11 - Number systems

- Sum of first n odd numbers is n^{2}
- Sum of first n even numbers is $\mathrm{n}(\mathrm{n}+1)$
- The product of the factors of N is given by $\mathrm{N}^{\mathrm{a} / 2}$, where a is the number of factors

Tip 12 - Number systems

 same.

- If the number is written as $2^{10 n}$

When n is odd, the last 2 digits are 24.
When n is even, the last 2 digits are 76 .

Tip 13 - Number systems

Divisibility

- Divisibility by 2: Last digit divisible by 2
- Divisibility by 4: Last two digits divisible by 4
- Divisibility by 8: Last three digits divisible by 8
- Divisibility by 16: Last four digit divisible by 16

Divisibility

- Divisibility by 3 : Sum of digits divisible by 3
- Divisibility by 9 : Sum of digits divisible by 9
- Divisibility by 27: Sum of blocks of 3 (taken right to left) divisible by 27
- Divisibility by 7: Remove the last digit, double it and subtract it from the truncated original number. Check if number is divisible by 7
- Divisibility by 11: (sum of odd digits) - (sum of even digits) should be 0 or divisible by 11

Tip 15 - Number systems

Divisibility properties

- For composite divisors, check if the number is divisible by the factors individually. Hence to check if a number is divisible by 6 it must be divisible by 2 and 3 .
- The equation $a^{n}-b^{n}$ is always divisible by $a-b$. If n is even it is divisible by $\mathrm{a}+\mathrm{b}$. If n is odd it is not divisible by $\mathrm{a}+\mathrm{b}$.
- The equation $a^{n}+b^{n}$, is divisible by $a+b$ if n is odd. If n is even it is not divisible by $\mathrm{a}+\mathrm{b}$.

Tip 16 - Number systems

- Converting from decimal to base b. Let $R_{1}, R_{2} \ldots$ be the remainders left after repeatedly dividing the number with b. Hence, the number in base b is given by ... $R_{2} R_{1}$.
- Converting from base b to decimal - multiply each digit of the number with a power of b starting with the rightmost digit and b^{0}.
- A decimal number is divisible by $b-1$ only if the sum of the digits of the number when written in base b are divisible by $b-1$.

Tip 17 - Number systems

Cyclicity

- To find the last digit of a^{n} find the cyclicity of a. For Ex. if $\mathrm{a}=2$, we see that
- $2^{1}=2$
- $2^{2}=4$
- $2^{3}=8$
- $2^{4}=16$
- $2^{5}=32$

Hence, the last digit of 2 repeats after every $4^{\text {th }}$ power. Hence cyclicity of $2=4$. Hence if we have to find the last digit of a^{n}, The steps are:

1. Find the cyclicity of a, say it is x
2. Find the remainder when n is divided by x, say remainder r
3. Find a^{r} if $\mathrm{r}>0$ and a^{x} when $\mathrm{r}=0$

Tip 18 - Number systems

- $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
- $(a+b)^{2}=\left(a^{2}+b^{2}+2 a b\right)$
- $(a-b)^{2}=\left(a^{2}+b^{2}-2 a b\right)$
- $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$

Tip 19 - Number systems

- $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)$
- $\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right)$
- $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right)$
- When $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$.

