Number Systems Tips

- Number Systems is the most important topic in the quantitative section.
- It is a very vast topic and a significant number of questions appear in CAT every year from this section.
- Learning simple tricks like divisibility rules, HCF and LCM, prime number and remainder theorems can help improve the score drastically.
- This document presents best short cuts which makes this topic easy and helps you perform better.

Tip 1 - Number systems

HCF and LCM

- HCF * LCM of two numbers = Product of two numbers
- The greatest number dividing a, b and c leaving remainders of x₁, x₂ and x₃ is the HCF of (a-x₁), (b-x₂) and (c-x₃).
- The greatest number dividing a, b and c (a<b<c) leaving the same remainder each time is the HCF of (c-b), (c-a), (b-a).
- If a number, N, is divisible by X and Y and HCF(X,Y) = 1. Then, N is divisible by X*Y

Tip 2 - Number systems

Prime and Composite Numbers

 Prime numbers are numbers with only two factors, 1 and the number itself.

Composite numbers are numbers with more than 2 factors.
Examples are 4, 6, 8, 9.

• 0 and 1 are neither composite nor prime.

There are 25 prime numbers less than 100.

Tip 3 - Number systems

Properties of Prime numbers

- To check if n is a prime number, list all prime factors less than or equal to √n. If none of the prime factors can divide n then n is a prime number.
- For any integer a and prime number p, a^p-a is always divisible by p
- All prime numbers greater than 2 and 3 can be written in the form of 6k+1 or 6k-1
- If a and b are co-prime then $a^{(b-1)} \mod b = 1$.

Tip 4 - Number systems

Theorems on Prime numbers

Fermat's Theorem:

Remainder of a^(p-1) when divided by p is 1, where p is a prime

Wilson's Theorem:

Remainder when (p-1)! is divided by p is (p-1) where p is a prime

Tip 5 - Number systems

Theorems on Prime numbers

Remainder Theorem

 If a, b, c are the prime factors of N such that N= a^p * b^q * c^r Then the number of numbers less than N and co-prime to N is φ(N)= N (1-1/a) (1 - 1/b) (1 - 1/c).
This function is known as the Euler's totient function.

Euler's theorem

 If M and N are co-prime to each other then remainder when M^{\$\phi(N)\$} is divided by N is 1.

Tip 6 - Number systems

Highest power of n in m! is [m/n]+[m/n²]+[m/n³]+.....

Ex: Highest power of 7 in 100! = [100/7] + [100/49] = 16

- To find the number of zeroes in n! find the highest power of 5 in n!
- If all possible permutations of n distinct digits are added together the sum = (n-1)! * (sum of n digits) * (11111... n times)

Tip 7 - Number systems

 If the number can be represented as N = a^p * b^q * c^r... then number of factors the is (p+1) * (q+1) * (r+1)

• Sum of the factors =
$$\frac{a^{p+1}-1}{a-1} * \frac{b^{q+1}-1}{b-1} * \frac{c^{r+1}-1}{c-1}$$

- If the number of factors are odd then N is a perfect square.
- If there are n factors, then the number of pairs of factors would be n/2. If N is a perfect square then number of pairs (including the square root) is (n+1)/2

Tip 8 - Number systems

If the number can be expressed as $N = 2^p * a^q * b^r \dots$ where the power of 2 is p and a, b are prime numbers

- Then the number of even factors of N = p (1+q) (1+r) . . .
- The number of odd factors of N = (1+q) (1+r)...

Tip 9 - Number systems

Number of positive integral solutions of the equation $x^2 - y^2 = k$ is given by

Tip 10 - Number systems

- Number of digits in a^b = [b log_m(a)] + 1 ; where m is the base of the number and [.] denotes greatest integer function
- Even number which is not a multiple of 4, can never be expressed as a difference of 2 perfect squares.

Tip 11 - Number systems

- Sum of first n odd numbers is n²
- Sum of first n even numbers is n(n+1)
- The product of the factors of N is given by N^{a/2}, where a is the number of factors

Tip 12 - Number systems

- The last two digits of a², (50 a)², (50+a)², (100 a)².....are same.
- If the number is written as 2¹⁰ⁿ

When n is odd, the last 2 digits are 24.

When n is even, the last 2 digits are 76.

Tip 13 - Number systems

Divisibility

- Divisibility by 2: Last digit divisible by 2
- Divisibility by 4: Last two digits divisible by 4
- Divisibility by 8: Last three digits divisible by 8
- Divisibility by 16: Last four digit divisible by 16

Divisibility

- Divisibility by 3: Sum of digits divisible by 3
- Divisibility by 9: Sum of digits divisible by 9
- Divisibility by 27: Sum of blocks of 3 (taken right to left) divisible by 27

Divisibility by 7: Remove the last digit, double it and subtract it from the truncated original number. Check if number is divisible by 7

 Divisibility by 11: (sum of odd digits) - (sum of even digits) should be 0 or divisible by 11

Tip 15 - Number systems

Divisibility properties

For composite divisors, check if the number is divisible by the factors individually. Hence to check if a number is divisible by 6 it must be divisible by 2 and 3.

The equation aⁿ-bⁿ is always divisible by a-b. If n is even it is divisible by a+b. If n is odd it is not divisible by a+b.

The equation aⁿ+bⁿ, is divisible by a+b if n is odd. If n is even it is not divisible by a+b.

Tip 16 - Number systems

• Converting from decimal to base b. Let $R_1, R_2 \dots$ be the remainders left after repeatedly dividing the number with b. Hence, the number in base b is given by $\dots R_2R_1$.

• Converting from base b to decimal - multiply each digit of the number with a power of b starting with the rightmost digit and b⁰.

• A decimal number is divisible by b-1 only if the sum of the digits of the number when written in base b are divisible by b-1.

Tip 17 - Number systems

Cyclicity

► To find the last digit of aⁿ find the cyclicity of a. For Ex. if a=2, we see that

- ►2¹=2
- ► 2²=4
- ► 2³=8
- ►2⁴=16

►2⁵=32

Hence, the last digit of 2 repeats after every 4^{th} power. Hence cyclicity of 2 = 4. Hence if we have to find the last digit of a^{n} , The steps are:

- 1. Find the cyclicity of a, say it is x
- 2. Find the remainder when n is divided by x, say remainder r
- 3. Find a^r if r>0 and a^x when r=0

Tip 18 - Number systems

•
$$(a + b)(a - b) = (a^2 - b^2)$$

•
$$(a + b)^2 = (a^2 + b^2 + 2ab)$$

•
$$(a - b)^2 = (a^2 + b^2 - 2ab)$$

•
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$$

Tip 19 - Number systems

- $(a^3 + b^3) = (a + b)(a^2 ab + b^2)$
- $(a^3 b^3) = (a b)(a^2 + ab + b^2)$
- $(a^3 + b^3 + c^3 3abc) = (a + b + c)(a^2 + b^2 + c^2 ab bc ac)$
- When a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc$.